AREVA Passive Autocatalytic Recombiner
Severe Accident-Qualified PAR for Combustible Gas Control

Testing and Maintenance
As soon as the PAR housings with the catalysts are assembled, the hydrogen reduction system is ready for operation. A functional check of a process section of the PAR will confirm this during the site acceptance tests and the in-service inspections to be performed later.

The design allows for a quick and easy removal of the catalytic plates. The functionality of this process section is usually tested under representative conditions with test gas containing hydrogen. The testing device is comprised of a movable trolley, a heated cabinet, measurements, an operational panel, an analysis unit and gas supply. The start of the catalytic reaction is indicated by a decreasing hydrogen concentration in the test gas. The result shows that the PAR reaches its nominal hydrogen depletion performance.

Benefits at a Glance
Low investment and high cost benefit
- Simple design that requires neither power supply nor operator action / automation
- Easy maintenance and in-service inspection
- Flexible as safety-classified / non-safety-classified PAR type

Reliable and flexible system
- Patented design, applied in more than 100 NPP worldwide
- Design basis and severe accident qualified hardware
- Low deterioration even under inert condition
- Long term H₂ / O₂ control
- High catalytic performance due to multiple precious metal catalyst with high porosity
- High proportion of precious metal content providing important design margins

High hydrogen depletion and flow rate of up to 1500 m³/h per unit
- Generation of strong and large convection loops increasing atmosphere mixing leading that results in enhanced system efficiency
- Low number of PAR units within the Containment
- Little space required for PAR system installation
- Reduced maintenance effort during plant operation

Thin-plate technology
- Fast heat-up of catalytic plates
- Self-acceleration (autocatalytic) of recombination
- High inlet cross section (98 % free area) due to thin catalytic plates’ low pressure drop
- High inlet flow velocity up to 1 m/s

Technical Data
The AREVA PAR is available in different sizes, allowing for the best possible arrangement in the various compartment areas.

<table>
<thead>
<tr>
<th>FR1-150T</th>
<th>FR1-320T</th>
<th>FR1-960T</th>
<th>FR1-380T</th>
<th>FR1-750T</th>
<th>FR1-1500T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>200</td>
<td>370</td>
<td>1,010</td>
<td>430</td>
<td>800</td>
</tr>
<tr>
<td>Depth (mm)</td>
<td>166</td>
<td>166</td>
<td>326</td>
<td>326</td>
<td>326</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Approx weight (kg)</td>
<td>18</td>
<td>26</td>
<td>60</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>No. of catalytic plates</td>
<td>15</td>
<td>32</td>
<td>96</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td>Inlet flow rate at 1 bar and 60°C (m³/h) up to</td>
<td>50</td>
<td>110</td>
<td>330</td>
<td>330</td>
<td>660</td>
</tr>
<tr>
<td>Depletion rate (kg/h) at 1.5 bar and 4 vol. %</td>
<td>0.18</td>
<td>0.40</td>
<td>1.20</td>
<td>1.20</td>
<td>2.40</td>
</tr>
</tbody>
</table>

AREVA Inc.
One Bethesda Center, 4800 Hampden Lane, Suite 1100, Bethesda, MD 20814
For more information, contact your VP, Key Accounts:
Tel: 434 832 2723 - Fax: 434 832 3840
regional.manager@areva.com – www.us.areva.com

The data and information contained herein are provided solely for illustration and informational purposes and create no legal obligations by AREVA. None of the information or data is intended by AREVA to be a representation or warranty of any kind, expressed or implied, and AREVA assumes no liability for the use or reliance on any information or data disclosed in this document

© 2011 AREVA Inc. All rights reserved.

AREVA Passive Autocatalytic Recombiner
Severe Accident-Qualified PAR for Combustible Gas Control

Improved plant safety with AREVA’s high-capacity PAR with a gas treating capacity of up to 1500 m³/h

Passive safety systems play an important part in long-term accident mitigation. Their main benefit is that they require neither operator action nor power supply. In the event of severe accidents due to LOCA (loss of coolant), large amounts of hydrogen might be released within the reactor containment, leading to a high concentration of explosive gas which might ultimately affect the integrity of the containment.

Based on the principle of catalytic oxidation, AREVA has developed a hydrogen reduction system which is based on the AREVA Passive Autocatalytic Recombiner (PAR). With a gas treating capacity of up to 1500 m³/h per PAR unit, the hydrogen concentration can be kept within certain limits even under severe accident conditions.

PAR Catalyst Design and Function
The catalyst design is based on thin stainless steel plates coated with multiple precious metals at a large reaction surface. It allows for low start temperatures and is very efficient in severe accident situations. To promote natural convection, the PAR has a metal housing with a gas inlet at the bottom and a lateral gas outlet at the top. The housing’s horizontal cover protects the catalyst from direct sprayed water and aerosol deposition. The numerous parallel plates at the bottom are arranged vertically. An inspection drawer ensures quick access to the catalytic plates.

Upon contact with the catalyst in the lower part of the housing, the gas mixtures containing hydrogen are recombined. The heat from this reaction causes a reduction in gas density that leads to buoyancy-driven flow, thus supplying the catalyst with a large amount of hydrogen that ensures a highly efficient recombination.

The dimensions of the recombiner and catalyst are well-balanced, allowing for a maximum rate of hydrogen recombination while keeping the size of the components and the number of necessary units as low as possible.

The AREVA PAR FR1-380T
Hydrogen mitigation applications with AREVA PARs

- Replacement of existing hydrogen recombiners for design basis accidents
- Hydrogen mitigation during severe accidents
- General limitation of combustible gas concentration
- Combination with post-accident venting and ignition functions possible

Operating Experience

To date, AREVA has been contracted, delivered and installed PAR-based H2 Control systems in more than 100 nuclear power plants in Europe, Asia and Africa, including test equipment and, if required, with a regeneration mode.

AREVA PAR Qualification Program

Germany

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlsruhe</td>
<td>since 1989</td>
<td>Ongoing development and qualification</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>Absence of feedback of the PARs; Prevention of sump strainer clogging</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>CO2 tests</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>TSP Spray Tests (Tri Sodium Phosphate)</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>1991</td>
<td>Performance test in a multi-containment geometry (Batelle Model Containment)</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td>OECD-THAI Hydrogen Recombiner Deflagration / Ignition test</td>
</tr>
</tbody>
</table>

France

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadarache</td>
<td>1995 to 1996</td>
<td>EDF KALI H2 tests qualification for 300 MW PWR French accident scenario</td>
</tr>
<tr>
<td>1996 to 1998</td>
<td></td>
<td>- Integrated core melt tests - international PAR qualification testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Full scale tests simulating inactive core melt conditions - IBISN / EDF H2 PAR tests</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>Pre-tests simulating inactive core melt conditions with catalysts of different suppliers - EDF / CEA KALI H2 tests deflagration / degradation</td>
</tr>
<tr>
<td>2004 to 2009</td>
<td></td>
<td>- Final active in-pile core melt test with catalysts of different suppliers (FBT3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Co2/CO2 KALI H2 tests deflagration / degradation</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>- OECD Cu-Iodine Interaction and high aerosol concentration test (up to 3g/m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- OECD-challenging poisoning severe accident atmospheric test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- High concentration poisons SnO2, LiNO3, Iodide</td>
</tr>
</tbody>
</table>

U.S. / France

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadarache</td>
<td>1995 to 1996</td>
<td>EPRI / EDF KALI H2 tests qualification for US ALWR</td>
</tr>
</tbody>
</table>

AREVA Passive Autocatalytic Recombiner Severe Accident-Qualified PAR for Combustible Gas Control

Qualification and Functional Tests

The AREVA PAR has been subjected to extensive and long-term testing to evaluate its performance in various accident scenarios in both PWRs and BWRs.

- Different pressures, temperatures, and steam and hydrogen concentrations
- Exposure to catalytic poisons (I₂, CO, H₃BO₃, CH₃I), chemicals caused by thermal cable degradation, and aerosols from a molten core substitute
- Following hydrogen combustion, submergence in water, oil fire, cable fire (French / US-cable)
- Within in spray water systems (French and Swedish / Korean PWR conditions)
- Low oxygen content
- With wetness during start-up; with direct water spray on the catalyst
- Under nitrogen pre-inerted atmosphere (e.g. U.S. BWR power plant conditions)
- After long-term recombination and deflagration
- In a severe accident atmosphere with a degraded core

Large multi-compartment containment geometries (Batelle model containment)

These tests verify hydrogen reduction by catalytic recombination in various ambient conditions:

- Recombination in a multi-compartment geometry with full scale FR1-1500T PAR

Examinations for the AREVA PAR qualification

The most important qualification test was performed during the PHEBUS FPT3 (Fission Product Test 3) in Cadarache (France) with participation of various authorities, research institutes and different PAR suppliers. Catalysts of various manufacturers were tested for the first time under real severe accident conditions with a degraded core.

Further testing included:

- Resistance to thermal aging
- Resistance to radiation (operational radiation, radiation following a core melt accident)
- Resistance against operational and seismic vibrations
- Resistance against flow caused by pressure differences following LOCA
- Ignition behavior, up to steam-inerted condition (> 55 vol-% steam)

Recent results of International PAR-Severe Accident Qualification

During tests in the frame of the EC/IRSN Core Melt Program PHEBUS (with real molten core), AREVA’s PARs showed the best performance in these categories:

- Very fast startup
- Highest efficiency
- Absolutely constant hydrogen depletion rates

International Testing, Severe Accident PAR Qualifications

Joint In-pile Severe Accident Research Program PHEBUS (PPT3) Results

The temperature graph indicates an intensive surface kinetic reaction regime of the AREVA PAR which triggers the catalytic reaction very quickly, even after exposure to a severe accident atmosphere with a degraded core.

These comprehensive real severe accident tests could be the model for a new international PAR qualification standard. From the results of this extensive qualification program, it can be deduced that the AREVA PAR is qualified for design basis and severe accident environmental conditions.
AREVA Passive Autocatalytic Recombiner
Severe Accident-Qualified PAR for Combustible Gas Control

Testing and Maintenance
As soon as the PAR housings with the catalysts are assembled, the hydrogen reduction system is ready for operation. A functional check of a process section of the PAR will confirm this during the site acceptance tests and the in-service inspections to be performed later.

The design allows for a quick and easy removal of the catalytic plates. The functionality of this process section is usually tested under representative conditions with test gas containing hydrogen. The testing device is comprised of a movable trolley, a heated cabinet, measurements, an operational panel, an analysis unit and gas supply. The start of the catalytic reaction is indicated by a decreasing hydrogen concentration in the test gas. The result shows that the PAR reaches its nominal hydrogen depletion performance.

Benefits at a Glance
Low investment and high cost benefit
- Simple design that requires neither power supply nor operator action / automation
- Easy maintenance and in-service inspection
- Flexible, available as safety-classified / non-safety-classified PAR type

Reliable and flexible system
- Patented design, applied in more than 100 NPP worldwide
- Design basis and severe accident qualified hardware
- Even performance even under inert condition
- Long-term H₂ / O₂ control
- High catalytic performance due to multiple precious metal catalyst with high porosity
- High proportion of precious metal content providing important design margins

High hydrogen depletion and flow rate of up to 1500 m³/h per unit
- Generation of strong and large convection loops increasing atmosphere mixing leading that results in enhanced system efficiency
- Low number of PAR units within the Containment
- Little space required for PAR system installation
- Reduced maintenance effort during plant operation

Thin-plate technology
- Fast heat-up of catalytic plates
- Self-acceleration (autocatalytic) of recombination
- High inlet cross section (98 % free area) due to thin catalytic plates’ low pressure drop
- High inlet flow velocity up to 1 m/s

Improved plant safety with AREVA’s high-capacity PAR with a gas treating capacity of up to 1500 m³/h

Passive safety systems play an important part in long-term accident mitigation. Their main benefit is that they require neither operator action nor power supply. In the event of severe accidents due to LOCA (loss of coolant), large amounts of hydrogen might be released within the reactor containment, leading to a high concentration of explosive gas which might ultimately affect the integrity of the containment.

Based on the principle of catalytic oxidation, AREVA has developed a hydrogen reduction system which is based on the AREVA Passive Autocatalytic Recombiner (PAR). With a gas treating capacity of up to 1500 m³/h per PAR unit, the hydrogen concentration can be kept within certain limits even under severe accident conditions.

PAR Catalyst Design and Function
The catalyst design is based on thin stainless steel plates coated with multiple precious metals at a large reaction surface. It allows for low start temperatures and is very efficient in severe accident situations. To promote natural convection, the PAR has a metal housing with a gas inlet at the bottom and a lateral gas outlet at the top. The housing’s horizontal cover protects the catalyst from direct spraying of water and aerosol deposition. The numerous parallel plates at the bottom are arranged vertically. An inspection drawer ensures quick access to the catalytic plates.

Upon contact with the catalyst in the lower part of the housing, the gas mixtures containing hydrogen are recombinated. The heat from this reaction causes a reduction in gas density that leads to buoyancy-driven flow, thus supplying the catalyst with a large amount of hydrogen that ensures a highly efficient performance.

The dimensions of the recombiner and catalyst are well balanced, allowing for a maximum rate of hydrogen recombinate while keeping the size of the components and the number of necessary units as low as possible.

Technical Data
The AREVA PAR is available in different sizes, allowing for the best possible arrangement in the various compartment areas.

<table>
<thead>
<tr>
<th>FR1-150T</th>
<th>FR1-320T</th>
<th>FR1-960T</th>
<th>FR1-380T</th>
<th>FR1-750T</th>
<th>FR1-1500T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>200</td>
<td>370</td>
<td>1,010</td>
<td>430</td>
<td>800</td>
</tr>
<tr>
<td>Depth (mm)</td>
<td>166</td>
<td>166</td>
<td>326</td>
<td>326</td>
<td>326</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Approx weight (kg)</td>
<td>18</td>
<td>26</td>
<td>60</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>No. of catalytic plates</td>
<td>15</td>
<td>32</td>
<td>96</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td>Inlet flow rate at 1 bar and 60°C (m³/h) up to</td>
<td>50</td>
<td>110</td>
<td>330</td>
<td>330</td>
<td>660</td>
</tr>
<tr>
<td>Depletion rate (kg/h) at 1.5 bar and 4 vol.-%</td>
<td>0.18</td>
<td>0.40</td>
<td>1.20</td>
<td>1.20</td>
<td>2.40</td>
</tr>
</tbody>
</table>

The data and information contained herein are provided solely for illustration and informational purposes and create no legal obligations by AREVA. None of the information or data, intended by AREVA to be a representation or warranty of any kind, expressed or implied, and AREVA assumes no liability for the use of or reliance on any information or data disclosed in this document. © 2011 AREVA Inc. All rights reserved.